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3. Train Gradient Boosting Machines (GBMs) for each Π-set

Overlapping histograms after scaling indicate good collapse of
data in non-dimensional space:

Training pipeline:

4. Evaluate each model in Π space
and normal space

5. Select model and Π-set best
balancing accuracy, complexity, and
domain knowledge

1. Collect relevant variables and their dimension

(a) traditional: gradients, fluxes, variances (5 min bins)

2. Systematically generate Π-sets using Buckingham’s Π theorem

(b) practical: use downsampled temperature signal only

Tailor-made data-driven similarity theories for the temperature
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Figure 1: Effect of different strengths of optical turbulence on laser beam
propagating through the atmosphere.
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What is Optical Turbulence (OT) and why does it matter?

Direct and indirect measurements of optical turbulence strength

Structure function approach used to obtain training data

Power spectral density 2nd order structure function

In inertial subrange:In inertial subrange:
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Obtaining data-driven parameterizations using Π-ML [PSB23] Traditional parameterizations

Optical ground-based astronomy and future free-
space optical communication (FSOC) suffer from
light getting distortedwhen it propagates through
the turbulent atmosphere. In astronomy, turbulent
fluctuations of the atmospheric refractive index,
known as optical turbulence (OT), cause blurry im-
ages and limit the detection of small objects. FSOC
links, which use optical beams to transmit data in-
stead of traditional radio waves, experience reduced
data rates or even link interruptions due to laser
beams getting distorted by OT (see Fig. 1).

Measuring OT needs expensive specialized instru-
ments and simulating OT numerically is expen-
sive due to high required spatial resolution to re-
solve the inertial subrange of turbulence. That is
why, turbulence parameterizations, which estimate
turbulent parameters frommore readily accessible
variables, have been actively researched for decades.

This poster presents how the data-driven similarity
theory framework Π-ML [PSB23] is used to obtain
physically consistent non-dimensional scalings
and parameterizations of OT using only the vari-
ables available in specific use cases.

Direct: Scintillometer

Measures scintillation, i.e.,
fluctuations of the received
laser intensity (path-averaged)

Indirect: Eddy-covariance system with
post-processing

Measure fast (>10Hz)wind, temperature, and
humidity (not here) signals to determine struc-
ture function coefficients in inertial subrange.

Conclusions
• Π-ML is a powerful tool to derive non-dimensional scalings for
flow processes using only the variables available→ tailor-made
• First, expand complexity of the fitting problem through genera-
tion of large number of physically motivated Π-groups and Π-sets.

• Using observational data,machine learning (ML) regression
models are fit to assess the capability of each Π-set to parame-
terize the target.

• The Π-sets and corresponding fitted models are analyzed to keep
only moderately complex and well-performing combinations.

• For parameterizations, simple enough Π spaces are found to re-
placeML regression by a simple linear model, ultimately, bring-
ing the complexity back down to an “analytical” level.

Monin-Obukhov similarity theory based [W71]...

... using fluxes:

with stability-dependent similarity function ,

where and .

... using gradients:

with stability-dependent similarity function

MOST assumptions inherited→ constant-flux layer!

Physics-based using variances [HB15]:

with , ,

and master length scale [MY82, NN09, O19]
is difficult to

determine experimentally

Figure 2: Demonstration of data collapsing in
Π space for all levels with simple fitted linear
model.

Figure 3: Vertical extrapolation performance of GBM
models in log-space using flux-based Π set.

Figure 5: Vertical extrapolation performance of GBM
models in log-space using temperature-only Π set.

The structure function coefficient
for the indirect method is deter-
mined by fitting a linear function
to the inertial subrange part of the

structure function in log-log space.
The 2nd order structure function of
sonic temperature is defined as

.

Assuming frozen turbulence, the
spatial increments are obtained
from a time signal as .

Results: tailor-made / use case-dependent parameterizations

Practical: 1 Hz “temperature only” parameterization

Traditional: flux and variance-based parameterization

For an in-depth
intercomparison,

see [PHSB24]

Use case: Outputs of numerical simulationswith access to local
fluxes and variances, e.g., large eddy simulations or mesoscale
simulations with high-order closure.

Variables: local fluxes and variances

Result:

• Single flux- and variance-based Π expression dominates and is
sufficient to collapse data reasonably well (cf. Fig 2).

• Groups containing gradients are discarded by GBMmodel.
• Scatter may point at missing length scale.
• Scaling is similar toW71 and consistent with theory ([BH22]:

, with in neutral conditions). Π groups contain-
ingmore complex length scales are currently being investigated.

Use case: 1 Hz thermocouples during field campaignwithout wind
measurements.

Variables: statistics of (downsampled) 1 Hz temperature time se-
ries and temperature increment signal

lagged by τ samples. Note that for training is still estimated
from the 10 Hz signal.

Motivation: No expensive 3D sonic anemometer needed.
No wind speed observations needed.

Result:

• Single Π expression similar to traditional parameterization is
sufficient to collapses data very well (cf. Fig. 4).

• Trained GBMmodels exhibit good but biased vertical extrapola-
tion performance (cf. Fig. 5).

As basis of our parameterizations, observed data is needed. can be obtained directly or indirectly,
where indirect observations from eddy-covariance systems are used in the present study.

Figure 4: Demonstration of data collapsing in
Π space for all levels with simple fitted linear
model.
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